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As the structures of more and more proteins and nucleic acids
become available, molecular docking is increasingly
considered for lead discovery. Recent studies consider the
hit-rate enhancement of docking screens and the accuracy of
docking structure predictions. As more structures are
determined experimentally, docking against homology-modeled
targets also becomes possible for more proteins. With more
docking studies being undertaken, the ‘drug-likeness’ and
specificity of docking hits is also being examined.
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Introduction
Given the atomic resolution structure of a macromolecule,
such as an enzyme, it should be possible to find novel 
molecules that bind to it, modulating its activity. This is
the premise behind all structure-based ligand design and
discovery efforts. Here we consider one aspect of this field:
structure-based ligand discovery, emphasizing the screening
of compound libraries using molecular docking. 

The promise of docking is that the structure of the 
target will provide a template for the discovery of novel 
ligands, dissimilar to those previously known. One begins
with a database of compounds and the structure of a 
receptor of interest and asks, ‘Of the compounds in the
database, which is most likely to bind to the receptor?’
(Figure 1). This apparently simple question disguises an
enormous problem and a clever, if sometimes unsuccessful,
strategy. The problem is that of predicting absolute 
binding affinities of many disparate molecules. Whereas
predicting relative binding affinities for related molecules
is possible, although time consuming, we have no reason to
expect that we can predict absolute binding affinities for so
many unrelated compounds. If docking has had an impact,
it is because of its strategy of using databases of available
compounds. This makes failure cheap; one simply goes to
the next compound in a hit list. Docking for discovery is a
screening technique: both false positives and false negatives
are tolerated as long as true positives are found at a 
sufficiently high rate to justify the effort. How high should
this hit rate be? 

Comparing docking and high-throughput
screening
Because high-throughput screening (HTS) is the dominant
technique for pharmaceutical lead discovery, what level of
hit-rate enhancement would be sufficient to justify pursuing
structure-based docking? Indeed, if HTS is available, why
do docking at all (Figure 1)? Two recent studies begin to
consider this question. 

Using both HTS and virtual screening, inhibitors were
sought for the type 2 diabetes target protein tyrosine 
phosphatase 1B (PTP1B) [1]. In the HTS experiments, 
a 400 000 compound in-house library was screened,
whereas libraries of commercially available compounds
were docked against the X-ray structure of PTP1B.
Ultimately, 365 high-scoring docked compounds were
tested experimentally. The hit rate for these 365 mole-
cules was 1700-fold higher than that found by HTS and
the docking hits were, surprisingly, more drug-like
(Figure 2). Intriguingly, there was no overlap among 
the HTS and docking hit lists, suggesting that the two 
techniques are complementary. 

This PTP1B comparison was imperfect in that the data-
bases being screened and docked were different. A fairer
comparison is reported by Paiva et al. [2•], who compared
virtual screening and HTS of the Merck chemical 
collection against the tuberculosis target dihydrodipicolinate
reductase. With binding defined as an IC50 < 100 µM, they
report a hit rate of < 0.2% for HTS, and a 6% hit rate 
for virtual screening. The best docking and HTS hits had 
Ki values of 7.2 µM and 35 µM, respectively.

Although these comparisons are at an early stage, there is
some reason to hope that structure-based docking screens
can enrich hit rates and that the hits are no less drug-like
than those obtained from HTS, even when screening 
commercially available databases. In the next section, we
consider two subsequent questions: how novel are docking
hits, and how well do the structural predictions correspond
to subsequent experimental results? 

Recent applications of docking 
Docking has been used to discover novel ligands for well
over 30 targets. Work in the past year has continued to
focus on enzymes (Table 1). The inhibitors discovered
were novel, having little similarity to the known ligands.
Most initial leads had affinities in the low-micromolar
range. The new sulfonamide inhibitors of carbonic 
anhydrase II [3] are the exception — they are much more
potent, but not completely novel. There has been an 
efflorescence of new docking methods in the past several
years (see below), and several docking programs were used
in these studies (Table 1). 
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Many of the docking studies included structure 
determination of a lead bound to the enzyme ([3,4•,5•];
R Powers, B Wei, BK Shoichet, unpublished data; Table 1).
In these papers, the docking predictions captured the
X-ray results well (Figure 3). In the case of tRNA guanine
transglycosylase (TGT), the deviations between the 
crystallographic and predicted geometries were less than
0.5 Å. Whereas in 1996 we described docking methods
predicting ligand-complexes to ‘low resolution’ [6], the
field has since progressed sufficiently that, at least in 
circumstances where the target remains relatively rigid and
the ligand has only a few rotatable bonds, docking can 

suggest new ligands and also their bound geometries with
some accuracy (but see [7] for a counter-example). 

In several projects, the docking results were followed
with biological studies ([8,9]; R Powers, BK Shoichet,
unpublished data). An example is the discovery of 
micromolar ligands for the retinoic acid receptor [8],
where the ligands were agonists and their efficacy was
reported in cell culture. Both this effort and that against
Bcl-2 [9] were also methodologically noteworthy: the
structures of the targets were not enzymes, and both were
homology modeled. 
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Figure 1

Characteristics of PTP1B inhibitors discovered
from HTS (blue) and virtual screening (yellow)
[1]. The numerical percentages are given at
the top of each column.
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Figure 1

Docking (left) and HTS (right) to discover new
leads for drug discovery.
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Integration of docking with design and virtual
libraries
Can docking hits be turned into leads through synthetic
elaboration? In several studies [5•,10], the affinity of hits
was improved by 10- to 1000-fold (Table 1), often through
‘classical’ structure-based techniques (i.e. beginning with a
lead and using the complexed structure and chemical intu-
ition to improve it). More sophisticated efforts have tried
to include synthetic accessibility in the virtual screening
from the beginning. In an effort to design novel CDK4
inhibitors, the de novo design program LEGEND was used to
suggest possible new inhibitor scaffolds [4•]. The problem
of synthetic inaccessibility, a common complaint of de novo
design methods, was overcome by using the program
SEEDS to search the Available Chemicals Directory (MDL,
Inc., San Leandro, CA) for scaffolds that were components
of the designed ligands. These scaffolds were tested and
one class of active molecules was elaborated using the
docked geometries as a guide. A scaffold-based approach

was also used to discover and elaborate novel inhibitors of
thrombin [11], Factor Xa [12] and, earlier, DNA gyrase
[13••]. These scaffold-based approaches are methodologically
tractable because the ligands are typically rigid and allow
for synthetic elaboration — more work in this area may be
expected in the future. 

There are ongoing efforts to include combinatorial 
chemistry in docking virtual libraries [14•,15]. These
methods yield compounds that are synthetically accessible
and cover much more chemical space than simple database
docking, but the high-scoring docked molecules cannot be
immediately acquired and tested. To focus the chemical
space that is screened, the virtual libraries may be tailored
for a particular target, for example using pharmacaphoric
constraints [16–18], or may be restricted to elaborations of
particular scaffolds [4•,19]. Iterative cycles of combinatorial
library design, virtual screening, synthesis and biological
testing have been used [12]. Hybrid methods employing
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Table 1

Recent examples of novel inhibitor discovery using molecular docking.

Target Representative hit
Lead inhibitor
IC50 (µM)

Follow up
inhibitor IC50

(µM) Docking program Type of structure used?

Complex
structure
solved?

Aldose reductase [10]

N

O

O−

Cl

O

4.3 0.21 Adam&Eve X-ray No

CDK4 [4�]

HO
H
N

O

H
N

Cl

44 0.011 Legend/SEEDS Homology model Yes*

Matriptase [43]

O

H2N

NH

O

HN
NH2

(   )
6

0.92 0.21 DOCK
† Homology model No

Bcl-2 [9]

N+ N+

−O O−

O O

10.4 NR‡
DOCK

 † Homology model No

Adenovirus
protease [58] O

O2N

NO2

NO2

NO2

3.1 NR EUDOC X-ray No

AmpC �-lactamase
(unpublished data)

S
O

O−

S

O

O

N
H

Cl

26§ NR DOCK
 # X-ray Yes



de novo design, combinatorial chemistry and molecular
docking draw on the strengths of each, and blur the 
distinction among these methods [20].

Technical advances in docking algorithms
Molecular docking continues to witness the introduction
of new algorithms and programs — these are much 
needed given the weaknesses in conformational sampling
and scoring. Along with efforts to improve established
docking programs, such as AutoDock, DOCK, Ecepp/
Prodock, FlexX, FLOG, GOLD, GREEN, ICM, LUDI,
Pro_LEADS, QXP and SLIDE (reviewed in [21] and [22]),
new docking programs have been published in the past
year, including the EUDOC algorithm [23], SEED [24•],
SEEDS [4•] and MM [25].

Two ongoing methodological challenges are adequate 
sampling of ligand–receptor configurations and accurate
evaluation of their complementarity. The treatment of 
ligand conformations has been incorporated into most of
the current docking algorithms. Treatment of receptor

flexibility remains a major challenge [22,26]. Abagyan [22]
has pointed out that if the receptor conformation sampled
is high-energy, and this is not accounted for in the docking
calculation, adding receptor flexibility may actually make
docking calculations worse. 

The program FlexE [27•], an extension to the FlexX

algorithm, explicitly samples a predefined ensemble 
of receptor structures. The structures are superposed,
and alternative conformations are recombined to create 
complete structures of the receptor. Docking against this
ensemble is twofold faster than explicit docking against
all conformations. In another approach, Goodsell and 
co-workers [28] adopted a single averaged interaction
energy grid to implicitly account for an ensemble of
receptor conformations in the AutoDock program (see also 
[29]). In the SLIDE program, Schnecke and Kuhn [30] 
introduced a step to optimize the conformations of receptor
side chains after initial placement of ligand. These 
methods are new and their effect on database docking is
still being evaluated.
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Table 1 continued

Target Representative hit
Lead inhibitor
IC50 (µM)

Follow up
inhibitor IC50

(µM) Docking program Type of structure used?

Complex
structure
solved?

Retinoic acid
receptor [8]

F3C
N

S

O

O−
2¶ NR ICM Homology model No

TGT [5�]

NH

NH

O

O
8.3 0.2 LUDI X-ray Yes

Carbonic
anhydrase II [3]

S S
O

O

S S
O

O

NH2

0.0008 NR FlexX X-ray Yes

HPRTase [59]

O2N

NO2

NO2

NO2

NN

O2N

NO2

NO2

NO2

NN
2.2 NR DOCK

 # X-ray No

Lysozyme cavity site
(unpublished data)

OH

56¥ NR DOCK
 # X-ray Yes

Dihydro-dipicolinate [2�]

S
O

O
Cl

Cl

SO O
N

N

O

O
7.2 NR FLOG X-ray No

*Structure determined with the analogous CDK2 enzyme. †Canonical DOCK from UCSF. ‡Not Reported §Ki. 
#The Northwestern University version

of DOCK, a derivative of UCSF DOCK. ¶EC50 in cell culture. ¥Kd.



Scoring functions for database docking continue to be
actively researched. These functions may be loosely divided
into three categories: force-field methods, knowledge-
based methods and empirical-regression methods.
Force-field methods use potentials similar to those found
in molecular mechanics and can be linked to more quanti-
tatively reliable techniques such as molecular dynamics
and thermodynamic integration. On the other hand, they
are prone to calculating high magnitude, and high error,
interaction energies. Both knowledge-based and empirical
scoring functions derive from experimental data; the 
former from patterns of atom contacts observed in 
structures, the latter from fits to binding energies. Both are
less subject to calculating overly large interaction energies,
but can suffer from problems of induction, including error
in the data from which they are derived. In force-field-
based scoring functions, much recent work has focused 
on efficient methods to incorporate solvation energies in
docking scores. Many methods use a generalized Born/surface
area model or other approximations of continuum electro-
statics, and these continue to be explored [24•,31]. Several
studies suggest that docking screens may be improved by
using better partial atomic charges for the ligands [32]
(B Wei, BK Shoichet, unpublished data). Recent improve-
ments in both empirical and knowledge-based scoring
functions [33] have focused on improving the balance
between polar and non-polar interactions [34], considering
the role of solvent [35], and correcting for intra-ligand 
contacts in the structures from which the knowledge-based
potentials are derived [36]. 

There is, at present, no consensus as to which type of 
scoring function is the best for docking screens; good
results have been achieved with all three approaches.
Similarly, whereas all three can exclude unreasonable 
molecules from hit lists, for instance molecules that are 
too big or too charged for a target site, none can reliably
rank ‘reasonable’ docking hits, except in special cases. It is 
perhaps a testament to the weakness of all current scoring
functions that some of the most reliable rankings are

achieved by ‘consensus’ scoring schemes that combine
weighted scores from several, often fundamentally different,
approaches [37•,38–41].

The use of homology models in docking
For many interesting targets, an experimental structure is
unavailable. In principle, homology modeling can calculate
a structure for use in drug discovery [42], thereby dramati-
cally increasing the number of targets to which docking
might be applied. How reliable are these models for 
docking? This question cannot be answered definitively,
but some tentative points may be made. 

Several groups have used homology models to design 
or discover ligands for target proteins. Indeed, of the 
12 docking screens summarized in Table 1, four were
based on homology models of the target structures
[4•,8,9,43]. Docking against homology-modeled structures
has also been used to improve the pharmacokinetic prop-
erties of known inhibitors [44] and to develop or expand 
structure–activity relationships [4•,45]. De novo design
methods have been used with modeled structures to
develop new inhibitors [4•,46]. At least one group has
developed a docking algorithm specifically for modeled
structures [47]. 

Some guides are available for how much sequence identity
there should be for virtual screening to be applied; 
estimates of 60% sequence identity between the template
and the model proteins have been suggested [48•]. As it hap-
pens, models with 45–56% sequence identity were used in
the studies considered here [4•,9,45]. Intriguingly, many of
the homology models used in successful database screening
or de novo design projects were modeled on ligand-bound
conformations of the template protein [4•,8,9,46]. 

Hit conformation and promiscuous inhibitors
As is well known to screeners and medicinal chemists,
many HTS hits are promiscuous and non-‘drug-like’. This
can also be true of docking hits. Whereas detailed testing
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Figure 3

Overlay of the predicted (carbon atoms in
green) and crystallographic (carbon atoms in
orange) conformations of a docking-derived
inhibitor of AmpC β-lactamase (stereo view)
(our unpublished data). The X-ray structure
was determined to 1.94 Å resolution, nitrogen
atoms in blue, oxygens in red, sulfurs in yellow.
Reprinted with permission from Structure.
Copyright 2002 Elsevier Science.



to confirm a hit routinely occurs in HTS projects, docking
hits are not always confirmed as carefully. In our own
painful experience, this can lead to artifacts that are 
confusing and time consuming. Every effort should be
made to remove what we have come to call ‘pathological’
inhibitors from docking hit lists. 

We can consider three classes of non-specific molecules
emerging from docking screens. The first is those mole-
cules that present ‘privileged structures’ [49•] (i.e. whose
innate properties make them genuinely more likely to
bind to many targets). Such ‘privileged structures’ typically
are welcome in hit lists and in docking databases. A second
class of promiscuous inhibitors includes molecules that
chemically react with proteins [50]. Filters to remove 
reactive and non-‘drug-like’ compounds from both virtual
and experimental screening databases are under constant
development [49•,51–56]. 

Small molecules that aggregate in solution at low micro-
molar concentrations constitute a third class of promiscuous
inhibitors [57•] (Figure 4). These aggregates are typically
50 to 400 nm in size — several compounds may form even
larger particles — and may adsorb or absorb the target pro-
teins, appearing to act as inhibitors. Aggregating molecules
are common in docking and HTS hit lists, and have been
widely reported as hits. They may, indeed, be common in
both virtual and experimental screening databases. These
‘pathological’ inhibitors have a single mechanism of action

and a distinctive behavioral fingerprint by which they can
be recognized. 

To detect aggregating ‘inhibitors’, we suggest re-testing
hits at their apparent IC50 using a 10-fold higher concen-
tration of the target protein than was used in the original
assay. Well-behaved inhibitors should not be affected, but
aggregate-based inhibitors show a dramatic decrease in
potency [57•]. Testing hits in a second counter-screen
assay is also sensible [13••,57•]. Perhaps the most definitive
test, if also the slowest, is to use dynamic light scattering to
test for large particles in the reaction buffer. These exper-
iments are easily performed and can save much grief by
removing these ‘pathological’ hits early, allowing one to
focus on more interesting genuine inhibitors that can be
produced by molecular docking. 

Conclusions
The recent explosion of protein structures, and the advent
of the genome projects, has renewed interest in using
structure-based docking for early-phase lead discovery.
Database docking has made considerable progress in the
past decade, but it remains a screening technique. As such,
current docking programs will dissatisfy investigators 
interested in definitive predictions of new inhibitors, and
predictions of geometries can still go wildly wrong. In
favorable circumstances, docking screens can substantially
enrich hit rates and predict the structures of hits bound 
to their targets in sufficient detail to be useful for the 
synthetic elaboration of leads. With all of its weaknesses,
structure-based screening through docking is mature
enough to be considered as a first-line technique in 
pharmaceutical discovery research. 
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